CUBED AREAS on the BIM												
Row Axis = Ax	Square Area = Ax ²	Cubed Area = Ax ³	equals =	[(Ax•9)	+	Ax ³ - (Ax•9)]	->	Ax ³ - (Ax•9)	=	nAx	*n	Ах
1	1	1	=	9	+				=			1
2	4	8	=	18	+				=			2
3	9	27	=	27	+	0		0	=	0	0	3
4	16	64	=	36	+	28		28	=	28	7	4
5	25	125	=	45	+	80		80	=	80	16	5
6	36	216	=	54	+	162		162	=	162	27	6
7	49	343	=	63	+	280		280	=	280	40	7
8	64	512	=	72	+	440		440	=	440	55	8
9	81	729	=	81	+	648		648	=	648	72	9
10	100	1000	=	90	+	910		910	=	910	91	10
11	121	1331	=	99	+	1232		1232	=	1232	112	11
12	144	1728	=	108	+	1620		1620	=	1620	135	12

Table 57

Table 57
Cubed
AreasCubed AREAS (BLUE), that are really Volumes (V), are presented on the BIM as the values 9Ax (PURPLE) in a
very different way from the Square Areas (Table 56).*The "*n*" (GREEN) values—-as those in Column 3 (on the
BIM), are now presented on the BIM as each of the successive Inner Grid (IG) Row Axis values for ANY given Ax
1,2,3,... For Cubed AREAS the value of "*n*" on each row is entirely dependent on the "x" value. For Cubed Areas,
the "x" variable in AREA=*n*Ax + xAx works for x=1,4,9,16,25,.... For this Table 57, the "x" value = 9.For Example: for Cubed Area of 5 = 5³ = 125: AREA=*n*Ax + xAx works for *n*=24,21,16,9,0 respectively for when
x=1,4,9,16,25, and, 24-21-16-9-0(PD25) are solved, they are exactly the Row Ax = 5 IG cell values. See Image
5³ for this example. In the above Table, the Row Ax = 5 values shown are 125 (BLUE), 45 (PURPLE) and 16
(GREEN). ONLY the 16 (GREEN) is on the BIM Row 5. To get the other cell values for that Row you must solve
for the AREA=*n*Ax + xAx works for x=1,4,9,16,25, and *n*=24,21,16,9,0 respectively. It works for every Row Ax #.

What is absolutely amazing is that the entire IG — Row by Row — is made up of these "n" values for each #! This would suggest that the seemingly flat, 2D BIM grid has a built in connection not only to every Pythagorean Triple, and to every PRIME — especially as PRIME Pair sets (PPsets) related to informing every EVEN # (Goldbach Conjecture) — but also, to the 3D world of Cubed Areas = Volumes, and beyond.

This paper and all its contents © 2020, Reginald Brooks. All rights reserved.

Permission is hereby granted for single copies to be made for personal, non-commercial use for students and teachers of schools, colleges and universities provided that: either the entire paper, including figures and tables, is kept intact; or, any extracts of the text, or figures or tables (in part or whole), be properly and visibly cited as to authorship and source.