Brooks (Base) Square (BS) 101

~ The Architecture of Space-Time (TAOST)

&

The Conspicuous Absence of Primes (TCAOP) ~

II. TCAOP / C. TCAOP / Prime Locator-addition

A Brief Introduction

Table of Contents

I. TAOST - the network

II. TCAOP - everything minus the network

A. Review of the "Butterfly Primes"

B. Brooks Square (BS)= the new ISL table matrix

C. TCAOP=BS-network

1. Prime Locator - addition <---

2. Prime Locator - subtraction

3. Prime Locator - diagonal addition

III. Interconnectedness

 TAOST: Rules 1-50 | Rules 51-80 | Rules 81-99 | Rules 100-107 | Rules 108-153 | TCAOP: Rule 154 | Rules 155-157 | Rules 158-159 | Rule 160 | Interconnectedness: Rules 161-175 | Appendix A: Rules 176-181 | Appendix B: Rules 182-200 |

IIC 1. Prime Locator - Addition (TCAOP)

Rules 155-157 will show how the addition of number values from the vertical or diagonal axis to numbers within the Strict Inner Grid result in prime numbers.

~click to enlarge image
155

BS Rule 155: Within the Strict Inner Grid (SIG), there are no prime numbers. However, adding a number from Column A (the vertical axis) to corresponding row number under Column B, D, F, H, J, L, and so on (all from the odd PD numbers), very often results in a prime number. This never happens in Columns C, E, G, I, K, M, and so on (the even PD numbers). In this section, Column Z will refer to the last row number before the PD. They are the numbers in the 1st diagonal. Plotting the number values in Column A, B and Z, their sums, ∑, and primes, and the differences as one progresses down the column examining each row reveals a strict pattern:

The sums, ∑, of Column A + Z are separated by a difference, ∆, of 3, and the primes located within ... being every other one ... are separated by a ∆ of 6. The sums, ∑, of Column A+B are separated by a difference, ∆, of 6 initially, and thereafter increased by +2 for each row down the column run. The same holds true for the primes.

Note: Column headings for the chart:

• Col A: all whole integer numbers
• Primes
• Out #s: the even numbers “out” of the SIG (not divisible by 4)
• PD Out #s: the squares of the primes on the PD (4,9,25,49,...)
• In #s: the even numbers “in” the SIG (even #s divisible by 4)
• Col Z: the last row number value before the PD
• ∑ A+Z: the sum of row values from Column A+Z
• ∆: difference in ∑ values
• Primes with ∑: primes found in the ∑ Col A+Z
• ∆: difference in prime values
• Col B: number values from Column B
• ∑ A+B: the sum of row values from Column A+B
• ∆: difference in ∑ values
• Primes with ∑: primes found in the ∑ Col A+B
• ∆: difference in prime values

 Column A + Z Example Col A (0,1) Primes Out #s PD Out #s In #s Col Z ∑ A+Z ∆ Primes * ∆ 2 2 3 5 5 3 3 5 8 3 6 4 4 7 11 3 11 5 5 9 14 3 6 6 6 11 17 3 17 7 7 13 20 3 6 8 8 15 23 3 23 9 9 17 26 3 6 10 10 19 29 3 29 11 11 21 32 3 6 12 12 23 35 3 5x7 13 13 25 38 3 6 14 14 27 41 3 41 15 15 29 44 3 6 16 16 31 47 3 47 17 17 33 50 3 6 18 18 35 53 3 53 19 19 37 56 3 6 20 20 39 59 3 59 21 21 41 62 3 6 22 22 43 65 3 5x13 23 23 45 68 3 6 24 24 47 71 3 71 25 25 49 74 3 6 26 26 51 77 3 7x11 27 27 53 80 3 6 28 28 55 83 3 83 29 29 57 86 3 6 30 30 59 89 3 89 31 31 61 92 3 6 32 32 63 95 3 5x19 33 33 65 98 3 6 34 34 67 101 3 101 35 35 69 104 3 6 36 36 71 107 3 107 37 37 73 110 3 6 38 38 75 113 3 113 39 39 77 116 3 6 40 40 79 119 3 7x17 41 41 81 122 3 6 42 42 83 125 3 5x5x5 43 43 85 128 3 6 44 44 87 131 3 131 45 45 89 134 3 6 46 46 91 137 3 137 47 47 93 140 3 6 48 48 95 143 3 11x13 49 49 97 146 3 6 50 50 99 149 3 149 51 51 101 152 3 6 52 52 103 155 3 5x31 53 53 105 158 3 6 54 54 107 161 3 7x23 55 55 109 164 3 6 56 56 111 167 3 167 57 57 113 170 3 6 58 58 115 173 3 173 59 59 117 176 3 6 60 60 119 179 3 179 61 61 121 182 3 6 62 62 123 185 3 5x37 63 63 125 188 3 6 64 64 127 191 3 191 65 65 129 194 3 6 66 66 131 197 3 197 67 67 133 200 3 6 68 68 135 203 3 7x29 69 69 137 206 3 6 70 70 139 209 3 11x19 71 71 141 212 3 6 72 72 143 215 3 5x43 73 73 145 218 3 6 74 74 147 221 3 13x17 75 75 149 224 3 6 76 76 151 227 3 227 77 77 153 230 3 6 78 78 155 233 3 233 79 79 157 236 3 6 80 80 159 239 3 239 81 81 161 242 3 6 82 82 163 245 3 5x7x7 83 83 165 248 3 6 84 84 167 251 3 251 85 85 169 254 3 6 86 86 171 257 3 257 87 87 173 260 3 6 88 88 175 263 3 263 89 89 177 266 3 6 90 90 179 269 3 269 91 91 181 272 3 6 92 92 183 275 3 5x5x11 93 93 185 278 3 6 94 94 187 281 3 281 95 95 189 284 3 6 96 96 191 287 3 7x41 97 97 193 290 3 6 98 98 195 293 3 293 99 99 197 296 3 6 100 100 199 299 3 13x23 *multiple of two or more primes

 Column A + B Example Col A (0,1) Primes Out #s PD Out #s In #s Col B ∑ A+B ∆ Primes ∆ 2 2 3 5 5 3 3 8 11 6 11 6 4 4 15 19 8 19 8 5 5 24 29 10 29 10 6 6 35 41 12 41 12 7 7 48 55 14 5x11 14 8 8 63 71 16 71 16 9 9 80 89 18 89 18 10 10 99 109 20 109 20 11 11 120 131 22 131 22 12 12 143 155 24 5x31 24 13 13 168 181 26 181 26 14 14 195 209 28 11x19 28 15 15 224 239 30 239 30 16 16 255 271 32 271 32 17 17 288 305 34 5x61 34 18 18 323 341 36 11x31 36 19 19 360 379 38 379 38 20 20 399 419 40 419 40 21 21 440 461 42 461 42 22 22 483 505 44 5x101 44 23 23 528 551 46 19x29 46 24 24 575 599 48 599 48 25 25 624 649 50 11x59 50 26 26 675 701 52 701 52 27 27 728 755 54 5x151 54 28 28 783 811 56 811 56 29 29 840 869 58 11x79 58 30 30 899 929 60 929 60 31 31 960 991 62 991 62 32 32 1023 1055 64 5x211 64 33 33 1088 1121 66 19x59 66 34 34 1155 1189 68 29x41 68 35 35 1224 1259 70 1259 70 36 36 1295 1331 72 11x121 72 37 37 1368 1405 74 5x281 74 38 38 1443 1481 76 1481 76 39 39 1520 1559 78 1559 78 40 40 1599 1639 80 11x149 80 41 41 1680 1721 82 1721 82 42 42 1763 1805 84 5x361 84 43 43 1848 1891 86 31x61 86 44 44 1935 1979 88 1979 88 45 45 2024 2069 90 5x413 90 *multiple of two or more primes

 ~click to enlarge image 156 BS Rule 156: The sum, ∑, of the addition of the number values in Column A plus that of each number value in the SIG forms prime #s only under the PD columns with odd #s. All the non-prime odd #s in these ∑ columns are multiples of primes. Note: Including the numbers of the 1st Diagonal from the PD ... the numbers 1, 3, 5, 7,...  naturally includes primes (underlined) before addition to Column A. The addition of Column A + Z generates additional primes only when the row value under Column A is even or the ∑ of A+Z is divisible by 5 or another prime (e.g. 12+23=35, 22+43=65, 26+51=77, 32+63=95).

TOP ]

 ~click to enlarge image 157 BS Rule 157: The addition of the odd PD number to its next even # to its right equals a prime number, or a multiple of primes.

TOP ]

 TAOST: Rules 1-50 | Rules 51-80 | Rules 81-99 | Rules 100-107 | Rules 108-153 | TCAOP: Rule 154 | Rules 155-157 | Rules 158-159 | Rule 160 | Interconnectedness: Rules 161-175 | Appendix A: Rules 176-181 | Appendix B: Rules 182-200 |

NEXT: On to II. TCAOP>II.C TCAOP=BS-network>2 Prime Locator - subtraction

Back to II. TCAOP>IB. Brooks Square (BS)= the new ISL table matrix

Page 2a- PIN: Pattern in Number...from primes to DNA.

Page 2b- PIN: Butterfly Primes...let the beauty seep in..

Page 2c- PIN: Butterfly Prime Directive...metamorphosis.

Page 2d- PIN: Butterfly Prime Determinant Number Array (DNA) ~conspicuous abstinence~.

Page 3- GoDNA: the Geometry of DNA (axial view) revealed.

Page 4- SCoDNA: the Structure and Chemistry of DNA (axial view).

Page 5a- Dark-Dark-Light: Dark Matter = Dark Energy

Page 5b- The History of the Universe in Scalar Graphics

Page 5c- The History of the Universe_update: The Big Void

Page 6a- Geometry- Layout

Page 6b- Geometry- Space Or Time Area (SOTA)

Page 6c- Geometry- Space-Time Interactional Dimensions(STID)

Page 6d- Distillation of SI units into ST dimensions

Page 6e- Distillation of SI quantities into ST dimensions

Page 7- The LUFE Matrix Supplement: Examples and Proofs: Introduction-Layout & Rules

Page 7c- The LUFE Matrix Supplement: References

Page 8a- The LUFE Matrix: Infinite Dimensions

Page 9- The LUFE Matrix:E=mc2

Page 10- Quantum Gravity ...by the book

Page 11- Conservation of SpaceTime

Page 12- LUFE: The Layman's Unified Field Expose`

Page 13- GoMAS: The Geometry of Music, Art and Structure ...linking science, art and esthetics. Part I

Page 14- GoMAS: The Geometry of Music, Art and Structure ...linking science, art and esthetics. Part II

Page 15- Brooks (Base) Square (BS): The Architecture of Space-Time (TAOST) and The Conspicuous Absence of Primes (TCAOP) - a brief introduction to the series

Page 16- Brooks (Base) Square interactive (BBSi) matrix: Part I "BASICS"- a step by step, multi-media interactive

Page 17- The Architecture Of SpaceTime (TAOST) as defined by the Brooks (Base) Square matrix and the Inverse Square Law (ISL).

Copyright©2009-12 Reginald Brooks, BROOKS DESIGN. All Rights Reserved.
 The LUFE Matrix | The LUFE Matrix Supplement | The LUFE Matrix: Infinite Dimensions | The LUFE Matrix: E=mc2 | Dark Matter=Dark Energy | The History of the Universe in Scalar Graphics | The History of the Universe_update: The Big Void | Quantum Gravity ...by the book | The Conservation of SpaceTime | LUFE: The Layman's Unified Field Expose` net.art index | netart01: RealSurReal...aClone | netart02: funk'n DNA/Creation GoDNA | netart03: 9-11_remembered | netart04: Naughty Physics (a.k.a. The LUFE Matrix) | netart05: Your sFace or Mine? | netart06: Butterfly Primes | netart07: Geometry of Music Color | net.games | Art Theory 101 / White Papers Index
(function() { var toJsLink = function(link) { // Check the escape conditions if (link.href === undefined) { return; } if (link.onclick) { return; } if (link.className.indexOf('bkry-link-ignore') !== -1) { return; } var handler = function(evt) { // Look out for escape conditions if (link.href.indexOf('#')) { var targetUrl = link.href.split('#')[0]; var currentUrl = window.location.href.split('#')[0]; if (targetUrl === currentUrl) { return; } } // Salt in the query string argument to make sure it always gets passed around var url = link.href; var hash = url.split('#')[1]; url = url.split('#')[0]; var qs = url.split('?')[1]; url = url.split('?')[0]; evt.preventDefault(); window.location = url + '?' + (qs || '') + (qs ? '&' : '') + 'bkry-rewrite-links=true' + (hash ? '#' + hash : '') return false; }; // Bind the event handler down if(link.addEventListener) { link.addEventListener('click', handler, false) } else if(link.attachEvent) { // old ie support link.attachEvent('onclick', handler) } }; if (window.location.search.indexOf('bkry-rewrite-links=true') !== -1) { // Look for new nodes window.addEventListener('DOMNodeInserted', function(e) { if (e.target.tagName = 'A') { toJsLink(e.target); } }, false); // Look for existing nodes var links = document.getElementsByTagName('a'); for (var i = 0; i < links.length; i++) { toJsLink(links[i]); } } })();